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Artificial General Intelligence (AGI)

» Artificial General Intelligence (AGI) has achieved huge
success in NLP and CV areas.

o e.g., Copilot, ChatGPT, Midjourney
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‘ A Basic Workflow of AGI

» Step 1: Pre-train a very large language model (LLM) via

specific strategies.
o e.g., masked word prediction

KDD2023 will witness many high-quality papers.
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A Basic Workflow of AGI

» Step 2: Prompting a pre-trained LLM

Help me answer a multiple choice o I I
Question: Greenhouses are great for plants like A Ianguage prompt IS a _ple?e
A. Pizza B. Lollipops C. French beans Of text added to the beg|nn|ng
! of an input text.
s Pre-trained Large « The large language model can
‘W ?,i(é Language Model be pre-trained via next word

prediction.

Answer | The correct answer is C. French beans.

The question-answering task is reformulated to the word prediction task,

which is consistent with the pre-training strategy, thus we do not need to
tune LLM.



' Graph AGI Still in the Early Stage

> Why hard?
o Cross-modalities, cross-domains, cross-tasks
o Social disputes: counterfactual outcomes, energy cost, etc.
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Graph AGI Still in the Early Stage

How to solve these problems?

o Traditional fine-tuning approaches only adjust models, which is
far from sufficient to solve graph problem as mentioned before.

o To solve these problems, we need to focus on data-level
operation, studying how to manipulate graph data directly

o How to learn data manipulation strategy beyond manually
designing?

We offer Graph Prompt, which is proved to be a Parametric Approach to
simulate various graph data operations. (e.g. removing/adding links, nodes,
subgraphs, changing features etc.)




Fine-tune vs Prompt

o Have the capability of
reformulating data

o More general cross-tasks

Fine-tune & Tuned % Frozen Prompt

o Need to tune the large pre-trained | pownstream I Ppretraining 1 pownstream :
model (inefficient) ! | Fine-tuning=® Tasks | Tasks  prompt | |

2 Do not change data I T g o ming |
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Figure 1: Fine-tuning, Pre-training, and Prompting.



‘ Graph Prompt works perfectly

» A great deal of work exist here:
o All in One: Multi-Task Prompting for Graph Neural Networks

o Universal Prompt Tuning for Graph Neural Networks.
o GPPT: Graph Pre-training and Prompt Tuning to Generalize Graph Neural Networks
o GraphPrompt: Unifying Pre-Training and Downstream Tasks for Graph Neural Networks
» In a nutshell, they implement graph prompts in different ways like
features, subgraphs

> Yet to be answered: are Graph Prompts, as fine-tuning of graph data,
powerful enough?

» In our paper, our direct response is "yes!"



‘ What Did we do

» Framework of analysis: we selected “GPF” & “All in one” as two

l'epl'esentatiVes Prompted Graph
o GPF, from Universal Prompt Tuning for Graph Neural Networks. H H
Core idea: train a prompt vector and add to each node.

«0
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o Allinone, from the paper All in One: Multi-Task Prompting for Graph Neural

Networks Prompted Graph
L . : i H
core idea: train a prompt subgraph along with concatenation et
parameters to control the connection. <
i B

> QOur insight:

o By applying these modifications to the original graph, we aim to achieve significant degrees of
freedom in the GNN’s output

o These degrees of freedom should be sufficient to cover arbitrary graph transformations.



‘ Why graph prompt works? A data operation perspective

Perspective from model tuning

» Before graph prompts, we onl
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Why graph prompt works? A data operation perspective

| Optimal Solution on G,,; }

> Our 1st theory contribution:
~ Bridge graphs always exist!

> Our next question:

> How difficult to find such a bridge graph
The pore-trained model with

using graph prompts? [ parameter 9" }
F g

Theorem 1. Let Fy- be a GNN model pre-trained on task T,,. with frozen parameters (0*); let
Tiow be the downstream task and C'is an optimal function to Tyy,. Given any graph Gori, C(Gori)
denotes the optzmal embedding vector to the downstream task ( i.e. can be parsed to yzeld correct



Measuring the difficulty of finding bridge graphs.

» Bridge Set and s-extended Bridge Set
Original BG — {Gp | Fe* (Gp) — C(G)}

Graph G,,;

e-Ba = {Gy | ¢ = | Fp(G,) - C(G)] < ')

(7 e

Some graphs that
are very close to
bridge graphs
(e-extended
Bridge Set)

The effectiveness of graph prompting
methods can be measured by whether
they can uniformly project G,,; into the
bridge set (without error), or at least

map them into the extended bridge set
with a small error.




Measuring the difficulty of finding bridge graphs.

Upper bound of the error on a single graph

o In full-rank models, the prompt can achieve zero approximation error.

o In non-full-rank models, the error has a clearly defined upper bound,
dependent on model expressiveness and data complexity.

for GPF or All-in-One prompt, there exists an upper bound of € such that for any input graph G,
there exists an optimal w where P,(G) € e-Bg, with € < u(60*) - A\(G), where u(6*) and \(G)
correspond to the model and graph G, respectively.

Theorem 5 is proved in Appendix A.3.3, where the upper bound of the error € can be further ex-
pressed as follows:

u(0*)A(G) = sin(®/2)[|C(G)| 4)
a measurement of the \Q a measurement of the
model’s expressiveness data complexity



Does that work for a batch of graphs?

For real-world scenarios, we often deal with a dataset.

o Already know work for a single graph is controllable.
o For n graphs, having n prompts is feasible
a but what is the minimum number of prompts required?

When only one vector GPF, or one node subgraph in Allinone

o Maybe not. You can’t expect a single vector to work miracles.

o The core issue here is: for different graphs, the desired prompts are
different, and a single prompt cannot meet everyone's requirements.

Theorem 6. For a GCN model Fy, for GPF with a single prompt vector or All-in-One with a single-
token graph prompt, given a batch of graphs G = {G1,--- ,G;,--- ,G}, the root mean squared



‘Modeling the statistical distribution of etrors

» For the case of non-full-rank order, we have proven that the error has
a strict upper bound.

> Now, we aim to model the data distribution for actual numerical

values.

o Under reasonable assumptions, we have proven that the error
distribution follows a chi distribution.

Theorem 8. Given a GCN model Fy with the last layer parameter matrix having rank F' — r
(F' is the graph embedding dimension, r is the rank lost), an input graph G, for the optimal w,
P,(G) € e-Bg. If the Graph Embedding Residuals follow the i.i.d. normal distribution, then €
follows a Chi distribution x, with r free variables.

o Further we can derive the mean and variance

Corollary 1_(S.ta.tlsncalMeasures.a.1|1d Confidence Values of €). The mean of € is t:\/_ F_(%r(i/l_%@ the

variance zs-c2 r— 2%%)/]—2&) i and confidence values can be obtained through CYP using nu-

merical methods or table lookup, where c is the scaling factor compared to the standard distribution,
and r is the number of dimensions lost compared to a full-rank matrix.



Extending to nonlinear models

Motreover, we have extended the analytical framework from
GCN to GAT, a type of nonlinear model.

o By "nonlinear,"” we mean that the aggregation parameters between
different nodes depend on the values of the feature matrix

o The core idea here is that in nonlinear models, aggregation is
controlled by the features, and tunable parameters of prompts here is
even more flexible.

Theorem 9. Let Fy lge a GAT mo:)del. If any layer of the model has a full row rank parameter matrix,
then for the All-in-One prompting framework, for any input graph G, there exists an optimal w such
that P,,(G) € Bg. When the parameter matrix is not full rank, there is an upper bound p(0) - A(G)
making P,,(G) € e-Bg, € < u(0) - \(G).



Pris(s

> We develop a powerful tool to help researchers easily conduct
various graph prompting approaches.

A library built upon PyTorch to easily conduct single or multi-task prompting for pre-trained GNNs

' Evaluation [ComprehensiveMetrics] [ Batch Evaluator ] [ Dynamic Dispatcher ] i
T |

Data Prompting DrG

E [ Data Loader ] Prompting Method .
[ Pre-processing ] i ’[ Allin One ][ GPPT ] Model Backbone
i [ Feature Engineering ] i [ GPF ] [ GPF _plus ] i [ GCN

| B
i Utils i [ GraphPrompt ] [ ...... ] i A [ GAT ] i
Ceomponenmesung | A { GF;”hsfcm}
i Sampl rap :
i [ UL ] [ Node-level ][ Edge-level ][ Graph-level ] i
E [ Less | 4 [ ------ ] E

Configuration [ Conf Files ] [ Pre-trained Model ] Demo [ Multiple Task ] [ Meta-learning ] https3//9ithUb-C0m/She|d0nreSGarCh/PFOG
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https://github.com/sheldonresearch/ProG

library built upon PyTorch to

multi-task prompting for
pre-trained GNNs
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220200 Hengyu Zhang®, Chunxu Shen* Xiangguo Sunt, Jie Tan, Yu Rong, Chengzhi Piao, Hong Cheng,
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Zigi Gao, Xiangguo Sun, Zijing Liu, Yu Li, Hong Cheng, Jia Li*. Protein Multimer Structure
Predlctlon via PPIl-guided Prompt Learning. ICLR 2024. Paper
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'Our Research Framework on Graph Prompts

Graph Prompt
Theory

Eco-systems . Graph Prompt

Design

Graph Prompt ) Graph Prompt

Tutorial Application




Our Research Framework on Graph Prompts

Graph Prompting Theory

a Qunzhong Wang, Xiangguo Sun, Hong Cheng. Does Graph Prompt

Work? A Data Operation Perspective with Theoretical Analysis.
ICML 2025

Graph Prompt Design

a Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, Jihong Guan. All in One: Multi-
Task Prompting for Graph Neural Networks. KDD 23.

a Haihong Zhao, Aochuan Chen, Xiangguo Sun, Hong Cheng, Jia Li. All in

One and One for All: A Simple yet Effective Method towards
Cross-domain Graph Pretraining. KDD 24.



Our Research Framework on Graph Prompts

Graph Prompt Tutorial

a Chenyi Zi, Bowen Liu, Xiangguo Sun, Hong Cheng, Jia Li. Rethinking Graph
Prompts: Unraveling the Power of Data Manipulation in Graph
Neural Networks. ICLR 2025 (BlogPosts)

o Xiangguo Sun, Jiawen Zhang, Xixi Wu, Hong Cheng, Yun Xiong, Jia
Li. Graph Prompt Learning: A Comprehensive Survey and
Beyond. htips://arxiv.org/abs/2311.16534

a Jia Li, Xiangguo Sun, Yuhan Li, Zhixun Li, Hong Cheng, Jeffrey Xu Yu. Graph
Intelligence with Large Language Models and Prompt Learning.
SIGKDD 24.

o Yuhan Li, Zhixun Li, Peisong Wang, Jia Li, Xiangguo Sun, Hong Cheng, Jeffrey
Xu Yu. A Survey of Graph Meets Large Language Model:
Progress and Future Directions. [JCAI 2024



https://arxiv.org/abs/2311.16534

Our Research Framework on Graph Prompts

Graph Prompt Benchmark

o Chenyi Zi, Haihong Zhao, Xiangguo Sun, Yiqing Lin, Hong Cheng, Jia
Li. ProG: A Graph Prompt Learning Benchmark. NeurlPS 2024

Graph Prompt Application

o Hengyu Zhang, Chunxu Shen, Xiangguo Sun, Jie Tan, Yu Rong, Chengzhi
Piao, Hong Cheng, Lingling Yi. Adaptive Graph Integration for
Cross-Domain Recommendation via Heterogeneous Graph
Coordinators. SIGIR 2025

a Zigi Gao, Xiangguo Sun, Zijing Liu, Yu Li, Hong Cheng, Jia Li. Protein
Multimer Structure Prediction via PPl-guided Prompt
Learning. ICLR 2024



Q&A

Thanks!

Graph Prompt Learning and Pre-training



